Page 1

Displaying 1 – 12 of 12

Showing per page

La trave in parete sottile a sezione aperta e variabile: formulazione teorica e risultati sperimentali

Mario Pasquino (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Theoretical and experimental results concerning the shear-center of a bent beam with variable section are carried out. The matrix methods of structural analysis for the static linear elastic problem is extended; the stiffness and load matrix are formulated starting from the sectorial areas theory in order to interpret the effect of non-uniform torsion. The formulation may be used through the general matrix displacement method of structural analysis.

Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity

Elisa Davoli (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of Γ-convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order ε2α−2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized...

Local Parameterization and the Asymptotic Numerical Method

H. Mottaqui, B. Braikat, N. Damil (2010)

Mathematical Modelling of Natural Phenomena

The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems

Local properties of the solution set of the operator equation in Banach spaces in a neighbourhood of a bifurcation point

Joanna Janczewska (2004)

Open Mathematics

In this work we study the problem of the existence of bifurcation in the solution set of the equation F(x, λ)=0, where F: X×R k →Y is a C 2-smooth operator, X and Y are Banach spaces such that X⊂Y. Moreover, there is given a scalar product 〈·,·〉: Y×Y→R 1 that is continuous with respect to the norms in X and Y. We show that under some conditions there is bifurcation at a point (0, λ0)∈X×R k and we describe the solution set of the studied equation in a small neighbourhood of this point.

Locking free matching of different three dimensional models in structural mechanics

Patrick Le Tallec, Saloua Mani Aouadi (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside flexible membranes. The model involves as in Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595] a bending dominated shell envelope and a quasi incompressible elastic body. The present work extends an earlier work of Arnold and Brezzi [Math Comp.66 (1997) 1–14] treating the shell part and proposes a global...

Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping

Gimyong Hong, Hakho Hong (2022)

Applications of Mathematics

We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...

Currently displaying 1 – 12 of 12

Page 1