Previous Page 2

Displaying 21 – 23 of 23

Showing per page

Approximation of a nonlinear thermoelastic problem with a moving boundary via a fixed-domain method

Jindřich Nečas, Tomáš Roubíček (1990)

Aplikace matematiky

The thermoelastic stresses created in a solid phase domain in the course of solidification of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. This problem, obtained from a real situation by many simplifications, contains a moving boundary between the solid and the liquid phase domains. To make the usage of standard numerical packages possible, we propose here a fixed-domain approximation by means of including the liquid phase domain into the problem (in...

Asymptotics of an optimal compliance-location problem

Giuseppe Buttazzo, Filippo Santambrogio, Nicolas Varchon (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.

Currently displaying 21 – 23 of 23

Previous Page 2