Loading [MathJax]/extensions/MathZoom.js
In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.
We present a general numerical method for calculating effective elastic properties of periodic structures based on the homogenization method. Some concrete numerical examples are presented.
We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with natoms where characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy asn tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: The bulk energy densityEbulk is given by an explicit expression...
We study an atomistic pair potential-energy E(n)(y) that describes
the elastic behavior of two-dimensional crystals with n atoms where
characterizes the particle positions. The main
focus is the asymptotic analysis of the ground state energy as n
tends to infinity. We show in a suitable scaling regime where the
energy is essentially quadratic that the energy minimum of E(n)
admits an asymptotic expansion involving fractional powers of n:
The bulk energy density Ebulk is given by an explicit
expression...
Currently displaying 1 –
5 of
5