Spinor types in infinite dimensions.
It is well known that starting with real structure, the Cayley-Dickson process gives complex, quaternionic, and octonionic (Cayley) structures related to the Adolf Hurwitz composition formula for dimensions p = 2, 4 and 8, respectively, but the procedure fails for p = 16 in the sense that the composition formula involves no more a triple of quadratic forms of the same dimension; the other two dimensions are n = 27. Instead, Ławrynowicz and Suzuki (2001) have considered graded fractal bundles of...
We introduce the symplectic twistor operator in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on .