An asymptotic Gilbert-Varshamov bound for -nets.
Previous Page 2
Bierbrauer, Jürgen, Schmid, Wolfgang Ch. (2005)
Integers
Harada, Masaaki (2008)
The Electronic Journal of Combinatorics [electronic only]
Hamada, Noboru, Maruta, Tatsuya (2010)
Serdica Journal of Computing
We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper...
Valeriu Prepelita (1972)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Kei Funano (2016)
Analysis and Geometry in Metric Spaces
We apply Gromov’s ham sandwich method to get: (1) domain monotonicity (up to a multiplicative constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.
Dae San Kim, Hyun Kwang Kim (2012)
Potapov, V.N., Krotov, D.S. (2006)
Sibirskij Matematicheskij Zhurnal
Johan P. Hansen, Jens Peter Pedersen (1993)
Journal für die reine und angewandte Mathematik
Previous Page 2