On Boolean partial differential equations
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various...