The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
After recalling the axiomatic concept of fuzziness measure, we define some fuzziness measures through Sugeno's and Choquet's integral. In particular, for the so-called homogeneous fuzziness measures we prove two representation theorems by means of the above integrals.
We discuss the effects that the usual set theoretic and arithmetic operations with fuzzy sets and fuzzy numbers have with respect to the energies and entropies of the fuzzy sets connected and of the resulting fuzzy sets, and we also compare the entropies and energies of the results of several of those operations.
We use the concept of t-norms and conorms to develop a pseudo metric and we then use this pseudo metric to define a class of measures of fuzziness associated with a fuzzy set. We investigate the properties of this class of measures of fuzziness.
The aim of this paper is to define global measures of uncertainty in the framework of Dempster-Shafer's Theory of Evidence. Starting from the concepts of entropy and specificity introduced by Yager, two measures are considered; the lower entropy and the upper entropy.
In this paper, we analyze and characterize all solutions about -migrativity properties of the five subclasses of 2-uninorms, i. e. , , , , , over semi-t-operators. We give the sufficient and necessary conditions that make these -migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for , the -migrativity of over a semi-t-operator is closely related to the -section of or the ordinal sum representation of t-norm...
Currently displaying 1 –
7 of
7