From the report of the organizing committee
The paper deals with extensions of the finite operator calculus of G.-C. Rota called -extensions which give a framework for corresponding quantum group investigations. This also covers the instance of the well-known -analogue of umbral calculus. The article also contains glossaries of the most important terms and notations used by Ward, Viskov, Markowsky and Roman on one side and the Rota-oriented notations on the other side.
Independently with [7] a corresponding fuzzy approach has been developed in [3-5] with applications in measure theory. One of the results the Egoroff theorem has been proved in an abstract form. In [1] a necessary and sufficient condition for holding the Egoroff theorem was presented in the case of a space with a monotone measure. By the help of [2] and [6] we prove a variant of the Egoroff theorem stated in [4].
After some remarks about the analogy between the classical gamma-function and Gaussian sums over finite fields a complete, very short explicit proof is given of an identity expressing a certain sum of products of Gaussian sums as a product of Gaussian sums. This identity is an analogue of the classical Barnes’ first lemma for the gamma-function. Four multiplicative characters of a finite field are concerned; the usually necessary restrictions on the triviality of certain products of these characters...
Summary: We specialize in a new way the second Noether theorem for gauge-natural field theories by relating it to the Jacobi morphism and show that it plays a fundamental role in the derivation of canonical covariant conserved quantities. In particular we show that Bergmann-Bianchi identities for such theories hold true covariantly and canonically only along solutions of generalized gauge-natural Jacobi equations. Vice versa, all vertical parts of gauge-natural lifts of infinitesimal principal automorphisms...
The author considers the Nijenhuis map assigning to two type (1,1) tensor fields , a mapping where , are vector fields. Then is a type (2,1) tensor field (Nijenhuis tensor) if and only if . Considering a smooth manifold with a smooth action of a Lie group, a secondary invariant may be defined as a mapping whose area of invariance is restricted to the inverse image of an invariant subset of under another invariant mapping. The author recognizes a secondary invariant related to the...