The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 241 –
260 of
728
We generalize the theory of generic subsets of definably compact definable groups to arbitrary o-minimal structures. This theory is a crucial part of the solution to Pillay's conjecture connecting definably compact definable groups with Lie groups.
Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
If κ < λ are such that κ is both supercompact and indestructible under κ-directed closed forcing which is also (κ⁺,∞)-distributive and λ is supercompact, then by a result of Apter and Hamkins [J. Symbolic Logic 67 (2002)], δ < κ | δ is δ⁺ strongly compact yet δ is not δ⁺ supercompact must be unbounded in κ. We show that the large cardinal hypothesis on λ is necessary by constructing a model containing a supercompact cardinal κ in which no cardinal δ > κ is supercompact, κ’s supercompactness...
Proof systems with sequents of the form
U ⊢ Φ for
proving validity of a propositional
modal μ-calculus formula Φ over a set U of
states in a given model usually handle
fixed-point formulae through unfolding, thus allowing such formulae
to reappear in a proof. Tagging is a technique originated by Winskel
for annotating fixed-point formulae with information
about the proof states at which these are unfolded. This information
is used later in the proof to avoid unnecessary unfolding, without...
We prove that if M is an o-minimal structure whose underlying order is dense then Th(M) does not interpret the theory of an infinite discretely ordered structure. We also make a conjecture concerning the class of the theory of an infinite discretely ordered o-minimal structure.
In questa nota gli Autori descrivono nuovi sistemi di logica (detta «paracompleta») connessi con la logica della vaghezza («fuzzy logic») e con le logiche paraconsistenti.
Currently displaying 241 –
260 of
728