The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 261 – 280 of 5989

Showing per page

A note on good pseudo BL-algebras

Magdalena Wojciechowska-Rysiawa (2010)

Discussiones Mathematicae - General Algebra and Applications

Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.

A Note on Indestructibility and Strong Compactness

Arthur W. Apter (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

If κ < λ are such that κ is both supercompact and indestructible under κ-directed closed forcing which is also (κ⁺,∞)-distributive and λ is 2 λ supercompact, then by a result of Apter and Hamkins [J. Symbolic Logic 67 (2002)], δ < κ | δ is δ⁺ strongly compact yet δ is not δ⁺ supercompact must be unbounded in κ. We show that the large cardinal hypothesis on λ is necessary by constructing a model containing a supercompact cardinal κ in which no cardinal δ > κ is 2 δ = δ supercompact, κ’s supercompactness...

A Note on Negative Tagging for Least Fixed-Point Formulae

Dilian Gurov, Bruce Kapron (2010)

RAIRO - Theoretical Informatics and Applications

Proof systems with sequents of the form U ⊢ Φ for proving validity of a propositional modal μ-calculus formula Φ over a set U of states in a given model usually handle fixed-point formulae through unfolding, thus allowing such formulae to reappear in a proof. Tagging is a technique originated by Winskel for annotating fixed-point formulae with information about the proof states at which these are unfolded. This information is used later in the proof to avoid unnecessary unfolding, without...

A note on noninterpretability in o-minimal structures

Ricardo Bianconi (1998)

Fundamenta Mathematicae

We prove that if M is an o-minimal structure whose underlying order is dense then Th(M) does not interpret the theory of an infinite discretely ordered structure. We also make a conjecture concerning the class of the theory of an infinite discretely ordered o-minimal structure.

A note on paracomplete logic

Newton C. A. da Costa, Diego Marconi (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota gli Autori descrivono nuovi sistemi di logica (detta «paracompleta») connessi con la logica della vaghezza («fuzzy logic») e con le logiche paraconsistenti.

A note on Steinhorn's omitting types theorem

Akito Tsuboi (2009)

Colloquium Mathematicae

Let p(x) be a nonprincipal type. We give a sufficient condition for a model M to have a proper elementary extension omitting p(x). As a corollary, we obtain a generalization of Steinhorn's omitting types theorem to the supersimple case.

Currently displaying 261 – 280 of 5989