Definability of arithmetical operations from binary quadratic forms
We characterize the class of definable families of countable sets for which there is a single countable definable set intersecting every element of the family.
Let Sq denote the set of squares, and let be the squaring function restricted to powers of n; let ⊥ denote the coprimeness relation. Let . For every integer n ≥ 2 addition and multiplication are definable in the structures ⟨ℕ; Bn,⊥⟩ and ⟨ℕ; Bn,Sq⟩; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of ⟨ℕ; Bp,SQp⟩ is decidable.
We prove the following descriptive set-theoretic analogue of a theorem of R. O. Davies: Every Σ¹₂ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ¹₂ functions if and only if all reals are constructible.
We show that if ℱ is a hereditary family of subsets of satisfying certain definable conditions, then the reals are precisely the reals α such that . This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the -encodable reals is also shown.
We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class of morphisms in a locally presentable category of structures, the orthogonal class of objects is a small-orthogonality...
We consider definably complete Baire expansions of ordered fields: every definable subset of the domain of the structure has a supremum and the domain cannot be written as the union of a definable increasing family of nowhere dense sets. Every expansion of the real field is definably complete and Baire, and so is every o-minimal expansion of a field. Moreover, unlike the o-minimal case, the structures considered form an axiomatizable class. In this context we prove a version of the Kuratowski-Ulam...
In this article, direct sum decomposition of group is mainly discussed. In the second section, support of element of direct product group is defined and its properties are formalized. It is formalized here that an element of direct product group belongs to its direct sum if and only if support of the element is finite. In the third section, product map and sum map are prepared. In the fourth section, internal and external direct sum are defined. In the last section, an equivalent form of internal...
Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter....
This text includes the definition and basic notions of product of posets, chain-complete and flat posets, flattening operation, and the existence theorems of recursive call using the flattening operator. First part of the article, devoted to product and flat posets has a purely mathematical quality. Definition 3 allows to construct a flat poset from arbitrary non-empty set [12] in order to provide formal apparatus which eanbles to work with recursive calls within the Mizar langauge. To achieve this...