Deux relations dénombrables, logiquement équivalentes pour le second ordre, sont isomorphes
The research on incomplete soft sets is an integral part of the research on soft sets and has been initiated recently. However, the existing approach for dealing with incomplete soft sets is only applicable to decision making and has low forecasting accuracy. In order to solve these problems, in this paper we propose a novel data filling approach for incomplete soft sets. The missing data are filled in terms of the association degree between the parameters when a stronger association exists between...
First we show a few well known mathematical diagonal reasonings. Then we concentrate on diagonal reasonings typical for mathematical logic.
We study diagonalization in the context of implicit proofs of [10]. We prove that at least one of the following three conjectures is true: ∙ There is a function f: 0,1* → 0,1 computable in that has circuit complexity . ∙ ≠ co . ∙ There is no p-optimal propositional proof system. We note that a variant of the statement (either ≠ co or ∩ co contains a function hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that if a minor variant...
We show that the variety of diassociative loops is not finitely based even relative to power associative loops with inverse property.
There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation is Borel reducible to E. (C) is only proved for special cases as in [So]. In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space of real sequences, i.e., subspaces such that ...
This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling If-then propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions. Is the Conditional Probability the Probability of a Conditional? This problem will...