The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Cellularity of free products of Boolean algebras (or topologies)

Saharon Shelah (2000)

Fundamenta Mathematicae

The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, θ = ( 2 c f ( μ ) ) + and 2 μ = μ + then there are Boolean algebras 𝔹 1 , 𝔹 2 such that c ( 𝔹 1 ) = μ , c ( 𝔹 2 ) < θ b u t c ( 𝔹 1 * 𝔹 2 ) = μ + . Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if 𝔹 is a ccc Boolean algebra and μ ω λ = c f ( λ ) 2 μ then 𝔹 satisfies the λ-Knaster condition (using the “revised GCH theorem”).

Continuous tree-like scales

James Cummings (2010)

Open Mathematics

Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.

Currently displaying 1 – 2 of 2

Page 1