The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 25 of 25

Showing per page

Countable partitions of the sets of points and lines

James Schmerl (1999)

Fundamenta Mathematicae

The following theorem is proved, answering a question raised by Davies in 1963. If L 0 L 1 L 2 . . . is a partition of the set of lines of n , then there is a partition n = S 0 S 1 S 2 . . . such that | S i | 2 whenever L i . There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.

Covering the plane with sprays

James H. Schmerl (2010)

Fundamenta Mathematicae

For any three noncollinear points c₀,c₁,c₂ ∈ ℝ², there are sprays S₀,S₁,S₂ centered at c₀,c₁,c₂ that cover ℝ². This improves the result of de la Vega in which c₀,c₁,c₂ were required to be the vertices of an equilateral triangle.

Currently displaying 21 – 25 of 25

Previous Page 2