The search session has expired. Please query the service again.
We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces of all real continuous functions defined on the compact spaces , the topological product of the Cantor cubes with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively...
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is . We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact...
Currently displaying 21 –
24 of
24