The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This article considers the eta power . It is proved that the coefficients of in this expression, as polynomials in b, exhibit equidistribution of the coefficients in the nonzero residue classes mod 5 when n = 5j+4. Other symmetries, as well as symmetries for other primes and prime powers, are proved, and some open questions are raised.
Let p̅(n) denote the number of overpartitions of n. It was conjectured by Hirschhorn and Sellers that p̅(40n+35) ≡ 0 (mod 40) for n ≥ 0. Employing 2-dissection formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for p̅(40n+35) modulo 5. Using the (p, k)-parametrization of theta functions given by Alaca, Alaca and Williams, we prove the congruence p̅(40n+35) ≡ 0 (mod 5) for n ≥ 0. Combining this congruence and the congruence p̅(4n+3) ≡ 0 (mod...
Currently displaying 21 –
26 of
26