The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 286

Showing per page

New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs

Ernest X. W. Xia (2015)

Colloquium Mathematicae

Let p p ¯ ( n ) denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, p p ¯ ( 3 n + 2 ) 0 ( m o d 3 ) . They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for p p ¯ ( n ) . Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for p p ¯ ( n ) . Furthermore, they also constructed infinite families of congruences for p p ¯ ( n ) modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several new infinite...

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen (2015)

Acta Arithmetica

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...

Currently displaying 141 – 160 of 286