On the additive structure of a class of ordered semirings.
In the paper it is proved that a nontrivial direct product of lattice ordered groups is never affine complete.
Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.
Let B(κ,λ) be the subalgebra of P(κ) generated by . It is shown that if B is any homomorphic image of B(κ,λ) then either or ; moreover, if X is the Stone space of B then either or . This implies the existence of 0-dimensional compact spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality.
We use categories to recast the combinatorial theory of full heaps, which are certain labelled partially ordered sets that we introduced in previous work. This gives rise to a far simpler set of definitions, which we use to outline a combinatorial construction of the so-called loop algebras associated to affine untwisted Kac--Moody algebras. The finite convex subsets of full heaps are equipped with a statistic called parity, and this naturally gives rise to Kac's asymmetry function. The latter is...