Displaying 761 – 780 of 3896

Showing per page

Countable 1-transitive coloured linear orderings II

G. Campero-Arena, J. K. Truss (2004)

Fundamenta Mathematicae

This paper gives a structure theorem for the class of countable 1-transitive coloured linear orderings for a countably infinite colour set, concluding the work begun in [1]. There we gave a complete classification of these orders for finite colour sets, of which there are ℵ₁. For infinite colour sets, the details are considerably more complicated, but many features from [1] occur here too, in more marked form, principally the use (now essential it seems) of coding trees, as a means of describing...

Countable chains of distributive lattices as maximal semilattice quotients of positive cones of dimension groups

Pavel Růžička (2006)

Commentationes Mathematicae Universitatis Carolinae

We construct a countable chain of Boolean semilattices, with all inclusion maps preserving the join and the bounds, whose union cannot be represented as the maximal semilattice quotient of the positive cone of any dimension group. We also construct a similar example with a countable chain of strongly distributive bounded semilattices. This solves a problem of F. Wehrung.

Counting biorders.

Christophe, Julie, Doignon, Jean-Paul, Fiorini, Samuel (2003)

Journal of Integer Sequences [electronic only]

Covering energy of posets and its bounds

Vandana P. Bhamre, Madhukar M. Pawar (2023)

Mathematica Bohemica

The concept of covering energy of a poset is known and its McClelland type bounds are available in the literature. In this paper, we establish formulas for the covering energy of a crown with 2 n elements and a fence with n elements. A lower bound for the largest eigenvalue of a poset is established. Using this lower bound, we improve the McClelland type bounds for the covering energy for some special classes of posets.

Currently displaying 761 – 780 of 3896