The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 841 – 860 of 3896

Showing per page

Dimension in algebraic frames

Jorge Martinez (2006)

Czechoslovak Mathematical Journal

In an algebraic frame L the dimension, dim ( L ) , is defined, as in classical ideal theory, to be the maximum of the lengths n of chains of primes p 0 < p 1 < < p n , if such a maximum exists, and otherwise. A notion of “dominance” is then defined among the compact elements of L , which affords one a primefree way to compute dimension. Various subordinate dimensions are considered on a number of frame quotients of L , including the frames d L and z L of d -elements and z -elements, respectively. The more concrete illustrations...

Dimension in algebraic frames, II: Applications to frames of ideals in C ( X )

Jorge Martinez, Eric R. Zenk (2005)

Commentationes Mathematicae Universitatis Carolinae

This paper continues the investigation into Krull-style dimensions in algebraic frames. Let L be an algebraic frame. dim ( L ) is the supremum of the lengths k of sequences p 0 < p 1 < < p k of (proper) prime elements of L . Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of L in terms of the dimensions of certain boundary quotients of L . This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily...

Currently displaying 841 – 860 of 3896