Displaying 81 – 100 of 206

Showing per page

A property of the solvable radical in finitely decidable varieties

Paweł M. Idziak, Matthew Valeriote (2001)

Fundamenta Mathematicae

It is shown that in a finitely decidable equational class, the solvable radical of any finite subdirectly irreducible member is comparable to all congruences of the irreducible if the type of the monolith is 2. In the type 1 case we establish that the centralizer of the monolith is strongly solvable.

A reduction theorem for ring varieties whose subvariety lattice is distributive

Mikhail V. Volkov (2010)

Discussiones Mathematicae - General Algebra and Applications

We prove a theorem (for arbitrary ring varieties and, in a stronger form, for varieties of associative rings) which basically reduces the problem of a description of varieties with distributive subvariety lattice to the case of algebras over a finite prime field.

A scheme for congruence semidistributivity

Ivan Chajda, Eszter K. Horváth (2003)

Discussiones Mathematicae - General Algebra and Applications

A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the ∧-semidistributive law.

A semantic construction of two-ary integers

Gabriele Ricci (2005)

Discussiones Mathematicae - General Algebra and Applications

To binary trees, two-ary integers are what usual integers are to natural numbers, seen as unary trees. We can represent two-ary integers as binary trees too, yet with leaves labelled by binary words and with a structural restriction. In a sense, they are simpler than the binary trees, they relativize. Hence, contrary to the extensions known from Arithmetic and Algebra, this integer extension does not make the starting objects more complex. We use a semantic construction to get this extension. This...

Currently displaying 81 – 100 of 206