Abstract Characterizations of Continuous Functions.
It is shown that every concretizable category can be fully embedded into the category of accessible set functors and natural transformations.
Given a generating family F of subgroups of a group G closed under conjugation and with partial order compatible with inclusion, a new group S can be constructed, taking into account the multiplication in the subgroups and their mutual actions given by conjugation. The group S is called the active sum of F, has G as a homomorph and is such that S/Z(S) ≅ G/Z(G) where Z denotes the center.The basic question we investigate in this paper is: when is the active sum S of the family F isomorphic to the...
Let be a Hilbert algebra. The monoid of all unary operations on generated by operations , which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of . This semilattice is isomorphic to the semilattice of finitely generated filters of , it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of . Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of , and the...
The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols. If the object class of a dhts-category...
In [7] and [8], two sets of regular identities without finite proper models were introduced. In this paper we show that deleting one identity from any of these sets, we obtain a set of regular identities whose models include all affine spaces over GF(p) for prime numbers p ≥ 5. Moreover, we prove that this set characterizes affine spaces over GF(5) in the sense that each proper model of these regular identities has at least 13 ternary term functions and the number 13 is attained if and only if the...
In spite of increasing studies and investigations in the field of aggregation operators, there are two fundamental problems remaining unsolved: aggregation of -fuzzy set-theoretic notions and their justification. In order to solve these problems, we will formulate aggregation operators and their special types on partially ordered sets with universal bounds, and introduce their categories. Furthermore, we will show that there exists a strong connection between the category of aggregation operators...
A -labeled -poset is an (at most) countable set, labeled in the set , equipped with partial orders. The collection of all -labeled -posets is naturally equipped with binary product operations and -ary product operations. Moreover, the -ary product operations give rise to
A Σ-labeled n-poset is an (at most) countable set, labeled in the set Σ, equipped with n partial orders. The collection of all Σ-labeled n-posets is naturally equipped with n binary product operations and nω-ary product operations. Moreover, the ω-ary product operations give rise to nω-power operations. We show that those Σ-labeled n-posets that can be generated from the singletons by the binary and ω-ary product operations form the free algebra on Σ in a variety axiomatizable by an infinite collection...
Let be an infinite locally finite tree. We say that has exactly one end, if in any two one-way infinite paths have a common rest (infinite subpath). The paper describes the structure of such trees and tries to formalize it by algebraic means, namely by means of acyclic monounary algebras or tree semilattices. In these algebraic structures the homomorpisms and direct products are considered and investigated with the aim of showing, whether they give algebras with the required properties. At...