The search session has expired. Please query the service again.
The main purpose of this paper is using the mean value formula of Dirichlet L-functions and the analytic methods to study a hybrid mean value problem related to certain Hardy sums and Kloosterman sums, and give some interesting mean value formulae and identities for it.
Soit une fraction rationnelle à coefficients entiers, vérifiant des hypothèses
assez générales. On prouve l’existence d’une infinité d’entiers , ayant exactement
deux facteurs premiers, tels que la somme d’exponentielles soit en , où est une constante
ne dépendant que de la géométrie de . On donne aussi des résultats de répartition du
type Sato-Tate, pour certaines sommes de Salié, modulo , avec entier comme ci-
dessus.
We prove that the sign of Kloosterman sums changes infinitely often as runs through the square-free numbers with at most prime factors. This improves on a previous result by Sivak-Fischler who obtained 18 instead of 15. Our improvement comes from introducing an elementary inequality which gives lower and upper bounds for the dot product of two sequences whose individual distributions are known.
The main purpose of this paper is to use the analytic method to study the calculating problem of the general Kloosterman sums, and give an exact calculating formula for it.
We give a simple proof of when is an odd primitiv quadratic Dirichlet character of conductor . In particular we do not use the Dirichlet class-number formula.
The various properties of classical Dedekind sums have been investigated by many authors. For example, Yanni Liu and Wenpeng Zhang: A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Mathematica Sinica, 27 (2011), 435–440 studied the hybrid mean value properties involving Dedekind sums and generalized Kloosterman sums . The main purpose of this paper, is using the analytic methods and the properties of character sums, to study the computational problem of one kind of...
Currently displaying 1 –
20 of
132