The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For any positive power n of a prime p we find a complete set of generating relations between the elements [r] = rⁿ - r and p·1 of a unitary commutative ring.
We prove that generating relations between the elements [r] = r²-r of a commutative ring are the following: [r+s] = [r]+[s]+rs[2] and [rs] = r²[s]+s[r].
Currently displaying 1 –
4 of
4