A Bezout theorem for determinantal modules
Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket -module is tensor a bracket group.
We give a simple geometric proof of Mohan Kumar's result about complete intersections.
Let be a left and right Noetherian ring and a semidualizing -bimodule. We introduce a transpose of an -module with respect to which unifies the Auslander transpose and Huang’s transpose, see Z. Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999), 5791–5812, in the two-sided Noetherian setting, and use to develop further the generalized Gorenstein dimension with respect to . Especially, we generalize the Auslander-Bridger formula to the generalized...
Let be a commutative Noetherian ring and an ideal of . We introduce the concept of -weakly Laskerian -modules, and we show that if is an -weakly Laskerian -module and is a non-negative integer such that is -weakly Laskerian for all and all , then for any -weakly Laskerian submodule of , the -module is -weakly Laskerian. In particular, the set of associated primes of is finite. As a consequence, it follows that if is a finitely generated -module and is an -weakly...