The search session has expired. Please query the service again.
We give a classification of finite group actions on a surface giving rise to quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
Soient un corps et une -variété projective et lisse. Si est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans . On applique cela à l’étude du principe de...
Currently displaying 1 –
5 of
5