The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2421 – 2440 of 3024

Showing per page

Studying the various properties of MIN and MAX matrices - elementary vs. more advanced methods

Mika Mattila, Pentti Haukkanen (2016)

Special Matrices

Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also consider whether...

Subharmonicity in von Neumann algebras

Thomas Ransford, Michel Valley (2005)

Studia Mathematica

Let ℳ be a von Neumann algebra with unit 1 . Let τ be a faithful, normal, semifinite trace on ℳ. Given x ∈ ℳ, denote by μ t ( x ) t 0 the generalized s-numbers of x, defined by μ t ( x ) = inf||xe||: e is a projection in ℳ i with τ ( 1 - e ) ≤ t (t ≥ 0). We prove that, if D is a complex domain and f:D → ℳ is a holomorphic function, then, for each t ≥ 0, λ 0 t l o g μ s ( f ( λ ) ) d s is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.

Sufficient conditions to be exceptional

Charles R. Johnson, Robert B. Reams (2016)

Special Matrices

A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity).

Currently displaying 2421 – 2440 of 3024