The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 91

Showing per page

Diagonal reductions of matrices over exchange ideals

Huanyin Chen (2006)

Czechoslovak Mathematical Journal

In this paper, we introduce related comparability for exchange ideals. Let I be an exchange ideal of a ring R . If I satisfies related comparability, then for any regular matrix A M n ( I ) , there exist left invertible U 1 , U 2 M n ( R ) and right invertible V 1 , V 2 M n ( R ) such that U 1 V 1 A U 2 V 2 = diag ( e 1 , , e n ) for idempotents e 1 , , e n I .

Diffeomorphisms of Rn with oscillatory jacobians.

Waldyr M. Oliva, Nelson M. Kuhl, Luiz T. Magalhâes (1993)

Publicacions Matemàtiques

The paper presents, mainly, two results: a new proof of the spectral properties of oscillatory matrices and a transversality theorem for diffeomorphisms of Rn with oscillatory jacobian at every point and such that NM(f(x) - f(y)) ≤ NM(x - y) for all elements x,y ∈ Rn, where NM(x) - 1 denotes the maximum number of sign changes in the components zi of z ∈ Rn, where all zi are non zero and z varies in a small neighborhood of x. An application to a semiimplicit discretization of the scalar heat equation...

Currently displaying 41 – 60 of 91