Extremal quantum states in coupled systems
We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space . This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space . As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.
We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.
A positive semi-definite block matrix (a state if it is normalized) is said to be separable if it is the sum of simple tensors of positive semi-definite matrices. A state is said to be entangled if it is not separable. It is very difficult to detect the border between separable and entangled states. The PPT (positive partial transpose) criterion tells us that the partial transpose of a separable state is again positive semi-definite, as was observed by M. D. Choi in 1982 from...
We study square matrices which are products of simpler factors with the property that any ordering of the factors yields a matrix cospectral with the given matrix. The results generalize those obtained previously by the authors.
A symmetric positive semi-definite matrix is called completely positive if there exists a matrix with nonnegative entries such that . If is such a matrix with a minimal number of columns, then is called the cp-rank of . In this paper we develop a finite and exact algorithm to factorize any matrix of cp-rank . Failure of this algorithm implies that does not have cp-rank . Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that...
Let f be an arithmetical function. A set S = x₁,..., xₙ of n distinct positive integers is called multiple closed if y ∈ S whenever x|y|lcm(S) for any x ∈ S, where lcm(S) is the least common multiple of all elements in S. We show that for any multiple closed set S and for any divisor chain S (i.e. x₁|...|xₙ), if f is a completely multiplicative function such that (f*μ)(d) is a nonzero integer whenever d|lcm(S), then the matrix having f evaluated at the greatest common divisor of and as its...
In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]
We prove that there exist infinitely may values of the real parameter α for which the exact value of the spectral subradius of the set of two matrices (one matrix with ones above and on the diagonal and zeros elsewhere, and one matrix with α below and on the diagonal and zeros elsewhere, both matrices having two rows and two columns) cannot be calculated in a finite number of steps. Our proof uses only elementary facts from the theory of formal languages and from linear algebra, but it is not constructive...