The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 3041 –
3060 of
4583
2000 Mathematics Subject Classification: 33D60, 26A33, 33C60The present paper envisages the applications of Riemann-Liouville fractional q-integral operator to a basic analogue of Fox H-function. Results involving the basic hypergeometric functions like Gq(.), Jv(x; q), Yv(x; q),Kv(x; q), Hv(x; q) and various other q-elementary functions associated with the Riemann-Liouville fractional q-integral operator have been deduced as special cases of the main result.
Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let be a cyclic -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the -subdifferential of f, .
Let X be a normed space. A set A ⊆ X is approximately convexif d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with and , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
In [11] and [7], the concepts of σ-core and statistical core of a bounded number sequence x have been introduced and also some inequalities which are analogues of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of the class and determine necessary and sufficient conditions for a matrix A to satisfy σ-core(Ax) ⊆ st-core(x) for all x ∈ m.
Currently displaying 3041 –
3060 of
4583