Displaying 301 – 320 of 471

Showing per page

Stability and Continuity of Functions of Least Gradient

H. Hakkarainen, R. Korte, P. Lahti, N. Shanmugalingam (2015)

Analysis and Geometry in Metric Spaces

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

Stability criteria of linear neutral systems with distributed delays

Guang-Da Hu (2011)

Kybernetika

In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded...

Standard ideals in convolution Sobolev algebras on the half-line

José E. Galé, Antoni Wawrzyńczyk (2011)

Colloquium Mathematicae

We study the relation between standard ideals of the convolution Sobolev algebra ( n ) ( t ) and the convolution Beurling algebra L¹((1+t)ⁿ) on the half-line (0,∞). In particular it is proved that all closed ideals in ( n ) ( t ) with compact and countable hull are standard.

Currently displaying 301 – 320 of 471