Displaying 581 – 600 of 880

Showing per page

On the 1/2 Problem of Besicovitch: quasi-arcs do not contain sharp saw-teeth.

Hany M. Farag (2002)

Revista Matemática Iberoamericana

In this paper we give an alternative proof of our recent result that totally unrectifiable 1-sets which satisfy a measure-theoretic flatness condition at almost every point and sufficiently small scales, satisfy Besicovitch's 1/2-Conjecture which states that the lower spherical density for totally unrectifiable 1-sets should be bounded above by 1/2 at almost every point. This is in contrast to rectifiable 1-sets which actually possess a density equal to unity at almost every point. Our present method...

On the almost monotone convergence of sequences of continuous functions

Zbigniew Grande (2011)

Open Mathematics

A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.

On the analytic approximation of differentiable functions from above

Alessandro Tancredi, Alberto Tognoli (2002)

Bollettino dell'Unione Matematica Italiana

We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

Currently displaying 581 – 600 of 880