On the analytic approximation of differentiable functions from above

Alessandro Tancredi; Alberto Tognoli

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 227-233
  • ISSN: 0392-4041

Abstract

top
We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.

How to cite

top

Tancredi, Alessandro, and Tognoli, Alberto. "On the analytic approximation of differentiable functions from above." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 227-233. <http://eudml.org/doc/194872>.

@article{Tancredi2002,
abstract = {We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.},
author = {Tancredi, Alessandro, Tognoli, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {227-233},
publisher = {Unione Matematica Italiana},
title = {On the analytic approximation of differentiable functions from above},
url = {http://eudml.org/doc/194872},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Tancredi, Alessandro
AU - Tognoli, Alberto
TI - On the analytic approximation of differentiable functions from above
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 227
EP - 233
AB - We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.
LA - eng
UR - http://eudml.org/doc/194872
ER -

References

top
  1. BROGLIA, F.- PERNAZZA, L., An Artin-Lang property for germs of functions, preprint, 1999. Zbl1010.32006MR1915210
  2. CARTAN, H., Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 86 (1957), 77-99. Zbl0083.30502MR94830
  3. COEN, S., Sul rango dei fasci coerenti, Boll. Un. Mat. It., 22 (1967), 377-382. Zbl0164.38202MR227467
  4. MALGRANGE, B., Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. Fr., 91 (1963), 113-127. Zbl0113.06302MR152673
  5. NARASIMHAN, R., Analysis on real and complex manifolds, North-Holland, Amsterdam, New York, Oxford, 1985. Zbl0583.58001MR832683
  6. TOGNOLI, A., Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 54 (1973), 316-322. Zbl0299.32002MR357845

NotesEmbed ?

top

You must be logged in to post comments.