On the analytic approximation of differentiable functions from above

Alessandro Tancredi; Alberto Tognoli

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 227-233
  • ISSN: 0392-4041

Abstract

top
We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.

How to cite

top

Tancredi, Alessandro, and Tognoli, Alberto. "On the analytic approximation of differentiable functions from above." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 227-233. <http://eudml.org/doc/194872>.

@article{Tancredi2002,
abstract = {We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.},
author = {Tancredi, Alessandro, Tognoli, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {227-233},
publisher = {Unione Matematica Italiana},
title = {On the analytic approximation of differentiable functions from above},
url = {http://eudml.org/doc/194872},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Tancredi, Alessandro
AU - Tognoli, Alberto
TI - On the analytic approximation of differentiable functions from above
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 227
EP - 233
AB - We determine conditions in order that a differentiable function be approximable from above by analytic functions, being left invariate on a fixed analytic subset which is a locally complete intersection.
LA - eng
UR - http://eudml.org/doc/194872
ER -

References

top
  1. BROGLIA, F.- PERNAZZA, L., An Artin-Lang property for germs of C functions, preprint, 1999. Zbl1010.32006MR1915210
  2. CARTAN, H., Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 86 (1957), 77-99. Zbl0083.30502MR94830
  3. COEN, S., Sul rango dei fasci coerenti, Boll. Un. Mat. It., 22 (1967), 377-382. Zbl0164.38202MR227467
  4. MALGRANGE, B., Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. Fr., 91 (1963), 113-127. Zbl0113.06302MR152673
  5. NARASIMHAN, R., Analysis on real and complex manifolds, North-Holland, Amsterdam, New York, Oxford, 1985. Zbl0583.58001MR832683
  6. TOGNOLI, A., Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 54 (1973), 316-322. Zbl0299.32002MR357845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.