The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1841 – 1860 of 4583

Showing per page

Józef Marcinkiewicz (1910-1940) - on the centenary of his birth

Lech Maligranda (2011)

Banach Center Publications

Józef Marcinkiewicz’s (1910-1940) name is not known by many people, except maybe a small group of mathematicians, although his influence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the 100 t h anniversary of his birth and 70 t h anniversary of his death. The discussion is divided into two periods of Marcinkiewicz’s life. First, 1910-1933, that is, from his birth to his graduation from the University of Stefan Batory in Vilnius,...

Kempisty's theorem for the integral product quasicontinuity

Zbigniew Grande (2006)

Colloquium Mathematicae

A function f: ℝⁿ → ℝ satisfies the condition Q i ( x ) (resp. Q s ( x ) , Q o ( x ) ) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and | ( 1 / μ ( U I ) ) U I f ( t ) d t - f ( x ) | < r . Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.

Currently displaying 1841 – 1860 of 4583