Lipschitz mappings, contingents, and differentiability.
We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of Δ-convex functions.
Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.
We study the local well-posed integrated Cauchy problem , v(0) = 0, t ∈ [0,κ), with κ > 0, α ≥ 0, and x ∈ X, where X is a Banach space and A a closed operator on X. We extend solutions increasing the regularity in α. The global case (κ = ∞) is also treated in detail. Growth of solutions is given in both cases.
For a Tychonoff space , is the lattice-ordered group (-group) of real-valued continuous functions on , and is the sub--group of bounded functions. A property that might have is (AP) whenever is a divisible sub--group of , containing the constant function 1, and separating points from closed sets in , then any function in can be approximated uniformly over by functions which are locally in . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...