Lipschitz regularity and approximate differentiability of the Diperna-Lions flow

Luigi Ambrosio; Myriam Lecumberry; Stefania Maniglia

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 114, page 29-50
  • ISSN: 0041-8994

How to cite

top

Ambrosio, Luigi, Lecumberry, Myriam, and Maniglia, Stefania. "Lipschitz regularity and approximate differentiability of the Diperna-Lions flow." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 29-50. <http://eudml.org/doc/108667>.

@article{Ambrosio2005,
author = {Ambrosio, Luigi, Lecumberry, Myriam, Maniglia, Stefania},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {29-50},
publisher = {Seminario Matematico of the University of Padua},
title = {Lipschitz regularity and approximate differentiability of the Diperna-Lions flow},
url = {http://eudml.org/doc/108667},
volume = {114},
year = {2005},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Lecumberry, Myriam
AU - Maniglia, Stefania
TI - Lipschitz regularity and approximate differentiability of the Diperna-Lions flow
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 29
EP - 50
LA - eng
UR - http://eudml.org/doc/108667
ER -

References

top
  1. [1] L. AMBROSIO - N. FUSCO - D. PALLARA, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
  2. [2] L. AMBROSIO, Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae, 158 (2004), pp. 227-260. Zbl1075.35087MR2096794
  3. [3] L. AMBROSIO, Lecture notes on transport equation and Cauchy problem for BV vector fields and applications. Preprint, 2004 (available at http:// cvgmt.sns.it). Zbl1075.35087
  4. [4] L. AMBROSIO - J. MALÝ, Very weak notions of differentiability. Preprint, 2005 (available at http://cvgmt.sns.it). Zbl1167.26001MR2332676
  5. [5] I. CAPUZZO DOLCETTA - B. PERTHAME, On some analogy between different approaches to first order PDE's with nonsmooth coefficients. Adv. Math. Sci Appl., 6 (1996), pp. 689-703. Zbl0865.35032MR1411988
  6. [6] F. COLOMBINI- N. LERNER, Uniqueness of continuous solutions for BV vector fields. Duke Math. J., 111 (2002), pp. 357-384. Zbl1017.35029MR1882138
  7. [7] C. LE BRIS - P. L. LIONS, Renormalized solutions of some transport equations with partially W1;1 velocities and applications. Annali di Matematica, 183 (2003), pp. 97-130. Zbl1170.35364MR2044334
  8. [8] R. J. DI PERNA - P. L. LIONS: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), pp. 511-547. Zbl0696.34049MR1022305
  9. [9] H. FEDERER, Geometric Measure Theory. Springer, 1969. Zbl0176.00801MR257325
  10. [10] N. LERNER: Transport equations with partially BV velocities. Preprint, 2004. Zbl1170.35362MR2124585
  11. [11] P. L. LIONS, Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I, 326 (1998), pp. 833-838. Zbl0919.34028MR1648524
  12. [12] E. M. STEIN: Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.