Displaying 821 – 840 of 3919

Showing per page

Correlation dimension for self-similar Cantor sets with overlaps

Károly Simon, Boris Solomyak (1998)

Fundamenta Mathematicae

We prove a classification theorem of the “Glimm-Effros” type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order 0 which is not Borel linearizable.

Corrigendum to (n,2)-sets have full Hausdorff dimension.

Themis Mitsis (2005)

Revista Matemática Iberoamericana

In the paper (n,2)-sets have full Hausdorff dimension, appeared in Rev. Mat. Iberoamericana 20 (2004), 381-393, the author claimed that an (n,2)-set must have full Hausdorff dimension. However, as pointed out by Terence Tao and John Bueti, the proof contains an error.

Countable contraction mappings in metric spaces: invariant sets and measure

María Barrozo, Ursula Molter (2014)

Open Mathematics

We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i(x) = r i x + b i on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi r i is strictly smaller than 1. Further, if ρ = {ρ k}k∈ℕ is a probability sequence, we...

Countable tightness in the spaces of regular probability measures

Grzegorz Plebanek, Damian Sobota (2015)

Fundamenta Mathematicae

We prove that if K is a compact space and the space P(K × K) of regular probability measures on K × K has countable tightness in its weak* topology, then L₁(μ) is separable for every μ ∈ P(K). It has been known that such a result is a consequence of Martin's axiom MA(ω₁). Our theorem has several consequences; in particular, it generalizes a theorem due to Bourgain and Todorčević on measures on Rosenthal compacta.

Covering locally compact groups by less than 2 ω many translates of a compact nullset

Márton Elekes, Árpád Tóth (2007)

Fundamenta Mathematicae

Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if C E K is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of C E K . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...

Currently displaying 821 – 840 of 3919