The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
M. Biernacki gave in 1936 concrete forms of the variability regions of z/f(z) and zf'(z)/f(z) of close-to-convex functions f for a fixed z with |z|<1. The forms are, however, not necessarily convenient to determine the shape of the full variability region of zf'(z)/f(z) over all close-to-convex functions f and all points z with |z|<1. We propose a couple of other forms of the variability regions and see that the full variability region of zf'(z)/f(z) is indeed the complex plane minus the origin....
Let σ denote the class of bi-univalent functions f, that is, both f(z) = z + a₂z² + ⋯ and its inverse are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order α and of bi-close-to-convex functions of order β, which turn out to be subclasses of σ. We obtain upper bounds for |a₂| and |a₃| for those classes. Moreover, we verify Brannan and Clunie’s conjecture |a₂| ≤ √2 for some of our classes. In addition, we obtain the Fekete-Szegö relation...
Currently displaying 1 –
3 of
3