The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Real C k Koebe principle

Weixiao Shen, Michael Todd (2005)

Fundamenta Mathematicae

We prove a C k version of the real Koebe principle for interval (or circle) maps with non-flat critical points.

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Currently displaying 1 – 5 of 5

Page 1