The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc

Vladimir Mityushev (1998)

Annales Polonici Mathematici

The conformal mapping ω(z) of a domain D onto the unit disc must satisfy the condition |ω(t)| = 1 on ∂D, the boundary of D. The last condition can be considered as a Dirichlet problem for the domain D. In the present paper this problem is reduced to a system of functional equations when ∂D is a circular polygon with zero angles. The mapping is given in terms of a Poincaré series.

Currently displaying 1 – 2 of 2

Page 1