...- Invarianten bei verallgemeinerten Carlesonmengen.
Agler, Lykova and Young introduced a sequence , where ν ≥ 0, of necessary conditions for the solvability of the finite interpolation problem for analytic functions from the open unit disc into the symmetrized bidisc Γ. They conjectured that condition is necessary and sufficient for the solvability of an n-point interpolation problem. The aim of this article is to give a counterexample to that conjecture.
A condition of Schmets and Valdivia for a boundary point of a domain in the complex plane to be regularly asymptotic is ameliorated.
In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.