The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Uniform estimates for the Cauchy-Riemann equation on q -convex wedges

Christine Laurent-Thiébaut, Jurgen Leiterer (1993)

Annales de l'institut Fourier

We study the -equation with Hölder estimates in q -convex wedges of n by means of integral formulas. If D n is defined by some inequalities { ρ i 0 } , where the real hypersurfaces { ρ i = 0 } are transversal and any nonzero linear combination with nonnegative coefficients of the Levi form of the ρ i ’s have at least ( q + 1 ) positive eigenvalues, we solve the equation f = g for each continuous ( n , r ) -closed form g in D , n - q r n , with the following estimates: if d denotes the distance to the boundary of D and if d β g is bounded, then for all ϵ > 0 ,...

Currently displaying 1 – 4 of 4

Page 1