The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 17 of 17

Showing per page

The equation ¯ u = f the intersection of pseudoconvex domains

Alessandro Perotti (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Viene studiata l'equazione ¯ u = f per le forme regolari sulla chiusura dell'intersezione di k domini pseudoconvessi. Si costruisce un operatore soluzione in forma integrale e sotto ipotesi opportune si ottengono stime della soluzione nelle norme 𝐂 k .

The L 2 ¯ -Cauchy problem on weakly q -pseudoconvex domains in Stein manifolds

Sayed Saber (2015)

Czechoslovak Mathematical Journal

Let X be a Stein manifold of complex dimension n 2 and Ω X be a relatively compact domain with C 2 smooth boundary in X . Assume that Ω is a weakly q -pseudoconvex domain in X . The purpose of this paper is to establish sufficient conditions for the closed range of ¯ on Ω . Moreover, we study the ¯ -problem on Ω . Specifically, we use the modified weight function method to study the weighted ¯ -problem with exact support in Ω . Our method relies on the L 2 -estimates by Hörmander (1965) and by Kohn (1973).

The null space of the ¯ -Neumann operator

Lars Hörmander (2004)

Annales de l’institut Fourier

Let Ω be a complex analytic manifold of dimension n with a hermitian metric and C boundary, and let = ¯ ¯ * + ¯ * ¯ be the self-adjoint ¯ -Neumann operator on the space L 0 , q 2 ( Ω ) of forms of type ( 0 , q ) . If the Levi form of Ω has everywhere at least n - q positive or at least q + 1 negative eigenvalues, it is well known that Ker has finite dimension and that the range of is the orthogonal complement. In...

The quasi-canonical solution operator to ¯ restricted to the Fock-space

Georg Schneider (2005)

Czechoslovak Mathematical Journal

We consider the solution operator S μ , ( p , q ) L 2 ( μ ) ( p , q ) to the ¯ -operator restricted to forms with coefficients in μ = f f is entire and n | f ( z ) | 2 d μ ( z ) < . Here μ , ( p , q ) denotes ( p , q ) -forms with coefficients in μ , L 2 ( μ ) is the corresponding L 2 -space and μ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula S to ¯ . This solution operator will have the property S v ( p , q ) v ( p , q + 1 ) . As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators...

The ¯ -Neumann operator and commutators of the Bergman projection and multiplication operators

Friedrich Haslinger (2008)

Czechoslovak Mathematical Journal

We prove that compactness of the canonical solution operator to ¯ restricted to ( 0 , 1 ) -forms with holomorphic coefficients is equivalent to compactness of the commutator [ 𝒫 , M ¯ ] defined on the whole L ( 0 , 1 ) 2 ( Ω ) , where M ¯ is the multiplication by z ¯ and 𝒫 is the orthogonal projection of L ( 0 , 1 ) 2 ( Ω ) to the subspace of ( 0 , 1 ) forms with holomorphic coefficients. Further we derive a formula for the ¯ -Neumann operator restricted to ( 0 , 1 ) forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications...

The ¯ -Neumann operator on Lipschitz q -pseudoconvex domains

Sayed Saber (2011)

Czechoslovak Mathematical Journal

On a bounded q -pseudoconvex domain Ω in n with a Lipschitz boundary, we prove that the ¯ -Neumann operator N satisfies a subelliptic ( 1 / 2 ) -estimate on Ω and N can be extended as a bounded operator from Sobolev ( - 1 / 2 ) -spaces to Sobolev ( 1 / 2 ) -spaces.

Trivial generators for nontrivial fibres

Linus Carlsson (2008)

Mathematica Bohemica

Pseudoconvex domains are exhausted in such a way that we keep a part of the boundary fixed in all the domains of the exhaustion. This is used to solve a problem concerning whether the generators for the ideal of either the holomorphic functions continuous up to the boundary or the bounded holomorphic functions, vanishing at a point in n where the fibre is nontrivial, has to exceed n . This is shown not to be the case.

Currently displaying 1 – 17 of 17

Page 1