The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1801 –
1820 of
2028
2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10,
45K05, 74D05,The aim of this tutorial survey is to revisit the basic theory of relaxation
processes governed by linear differential equations of fractional order. The
fractional derivatives are intended both in the Rieamann-Liouville sense
and in the Caputo sense. After giving a necessary outline of the classica
theory of linear viscoelasticity, we contrast these two types of fractiona
derivatives in their ability to take into...
We shed some light on the inter-connections between different characterizations leading to the classical Meixner family. This allows us to give free analogs of both Sheffer's and Al-Salam and Chihara's characterizations in the classical case by the use of the free derivative operator. The paper closes with a discussion of the q-deformed case, |q| < 1.
A transference theorem for convolution operators is proved for certain families of one-dimensional hypergroups.
We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer ,
where
Currently displaying 1801 –
1820 of
2028