The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 148

Showing per page

On the oscillation of a class of linear homogeneous third order differential equations

N. Parhi, P. Das (1998)

Archivum Mathematicum

In this paper we have considered completely the equation y ' ' ' + a ( t ) y ' ' + b ( t ) y ' + c ( t ) y = 0 , ( * ) where a C 2 ( [ σ , ) , R ) , b C 1 ( [ σ , ) , R ) , c C ( [ σ , ) , R ) and σ R such that a ( t ) 0 , b ( t ) 0 and c ( t ) 0 . It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.

Currently displaying 101 – 120 of 148