The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We derive monotonicity results for solutions of ordinary differential inequalities of second order in ordered normed spaces with respect to the boundary values. As a consequence, we get an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski's Fixed Point Theorem.
Sufficient conditions for the -th order linear differential equation are derived which guarantee that its Cauchy function , together with its derivatives , , is of constant sign. These conditions determine four classes of the linear differential equations. Further properties of these classes are investigated.
An extension of a result of R. Conti is given from which some integro-differential inequalities of the Gronwall-Bellman-Bihari type and a criterion for the continuation of solutions of a system of ordinary differential equations are deduced.
We answer some questions concerning Perron and Kamke comparison functions satisfying the Carathéodory condition. In particular, we show that a Perron function multiplied by a constant may not be a Perron function, and that not every comparison function is bounded by a comparison function with separated variables. Moreover, we investigate when a sum of Perron functions is a Perron function. We also present a criterion for comparison functions with separated variables.
Currently displaying 1 –
11 of
11