The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 52

Showing per page

On L w 2 -quasi-derivatives for solutions of perturbed general quasi-differential equations

Sobhy El-sayed Ibrahim (1999)

Czechoslovak Mathematical Journal

This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of n th order with complex coefficients M [ y ] - λ w y = w f ( t , y [ 0 ] , ... , y [ n - 1 ] ) , t [ a , b ) provided that all r th quasi-derivatives of solutions of M [ y ] - λ w y = 0 and all solutions of its normal adjoint M + [ z ] - λ ¯ w z = 0 are in L w 2 ( a , b ) and under suitable conditions on the function f .

On optimal L p regularity in evolution equations

Alessandra Lunardi (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Using interpolation techniques we prove an optimal regularity theorem for the convolution u t = 0 t T t - s f s d s , where T t is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when T t is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in L p R n , 1 < p < , in which case it yields new optimal regularity results in fractional...

Currently displaying 1 – 20 of 52

Page 1 Next