The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory

Guillaume Carlier, Rabah Tahraoui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This article is devoted to the optimal control of state equations with memory of the form: x ˙ ( t ) = F ( x ( t ) , u ( t ) , 0 + A ( s ) x ( t - s ) d s ) , t > 0 , with initial conditions x ( 0 ) = x , x ( - s ) = z ( s ) , s > 0 . Denoting by y x , z , u the solution of the previous Cauchy problem and: v ( x , z ) : = inf u V { 0 + e - λ s L ( y x , z , u ( s ) , u ( s ) ) d s } where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form: λ v ( x , z ) + H ( x , z , x v ( x , z ) ) + D z v ( x , z ) , z ˙ = 0 in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.

Currently displaying 1 – 1 of 1

Page 1