The frequency decomposition multi-grid method. II. Convergence analysis based on the additive Schwarz method.
In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity,...
We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.
The scalar product of the FEM basis functions with non-intersecting supports vanishes. This property is generalized and the concept of local bilinear functional in a Hilbert space is introduced. The general form of such functionals in the spaces and is given.