The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 31

Displaying 601 – 604 of 604

Showing per page

Numerical study on the blow-up rate to a quasilinear parabolic equation

Anada, Koichi, Ishiwata, Tetsuya, Ushijima, Takeo (2017)

Proceedings of Equadiff 14

In this paper, we consider the blow-up solutions for a quasilinear parabolic partial differential equation u t = u 2 ( u x x + u ) . We numerically investigate the blow-up rates of these solutions by using a numerical method which is recently proposed by the authors [3].

Numerical treatment of 3-dimensional potential problem

Vladimír Drápalík, Vladimír Janovský (1988)

Aplikace matematiky

Assuming an incident wave to be a field source, we calculate the field potential in a neighborhood of an inhomogeneous body. This problem which has been formulated in 𝐑 3 can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulated on a sphere. Then the potential satisfies a well posed boundary value problem in a ball containing the body. A numerical approximation is suggested and its convergence is analyzed.

Currently displaying 601 – 604 of 604

Previous Page 31